Jump to content
Powered by BIOPRO BW
  • BIOPRO BW
  • Healthcare industry
  • Bioeconomy
  • Project pages
    • MDR & IVDR
    • Innovation & Startups

Bioeconomy Logo

Main navigation

  • Start page Start page
  • Bioeconomy in BW

    Bioeconomy in BW

    Close Close
    • What is a bioeconomy?
      • Perspectives on the bioeconomy
      • Processes and technologies in the bioeconomy
      • Bioeconomy products
    • Bioeconomy in BW
    • Bioeconomy stakeholders in BW
      • BW and its companies
      • BW and its researchers
      • BW and its networks
  • Articles

    Articles

    Close Close
    • News
    • Press releases
    • Dossiers
    • Biobased resources
    • Bioenergy
    • Materials and chemicals
    • Politics, ethics & economy
    • Environmental analytics
  • de
  • en
Show menu Show menu

You are here:

  1. Home
  2. Search
Show:Results per page
  • 25Show results
  • 50Show results
  • 75Show results

Search Results

  • Sustainable binder alternative - 18/12/2023 Bunt gezeichnetes Schaubild mit dem Kreislauf des Verfahrens beginnend mit Holz und Insektenspeichel über Kleber und Fabrikationsgerät bis zur Kompostierung nach Gebrauchsende und wieder von vorne beginnend vom Baum, der die Holzreste spendet.

    Copied from insects: new biological wood binder under development

    Plastic is all around us; and unfortunately, it is not going away any time soon. The search for more sustainable solutions is fully underway. However, binders that degrade only with difficulty or not at all are still used to bond natural materials such as wood and straw - not yet truly environmentally friendly. Fraunhofer researchers are working on an insect-inspired wood binder that makes bonded wood products both resistant and biodegradable.

    https://biopro-v9-test-bio.xanium.io/en/articles/news/copied-insects-new-biological-wood-binder-under-development
  • Microorganisms degrade biobased turf infill - 17/10/2023 Cut through the eco-friendly artificial turf with green fibres and white granule beads on a beige, small-grained subsoil.

    Eco-friendly artificial turf: a sports pitch that’s good for people and the environment

    There are thousands of artificial turf pitches in Germany. They are extremely practical, but often not at all environmentally friendly. When it rains or the pitch is used, plastic particles from the rubber granules can be released into the envronment, where they remain. Researchers at the University of Stuttgart along with the company TECNARO are now developing an artificial turf with an infill that biodegrades as soon as it leaves the pitch.

    https://biopro-v9-test-bio.xanium.io/en/articles/news/eco-friendly-artificial-turf-sports-pitch-s-good-people-and-environment
  • Press release - 27/07/2023

    Materials Research: Biocatalytic Foams of Tremendous Stability and Activity

    Industrial biocatalysis with enzymes is deemed to be a “game changer” in the development of a sustainable chemical industry. Enzymes can be used to synthesize an impressive range of complex molecules. Researchers of KIT have now developed a new class of materials by producing enzyme foams of tremendous stability and activity. The researchers have already filed a patent application on the process to produce enzyme foams.

    https://biopro-v9-test-bio.xanium.io/en/articles/pm/materials-research-biocatalytic-foams-tremendous-stability-and-activity
  • Press release - 25/07/2023

    Green Genetic Engineering: Making Mendel’s Dream Come True with Molecular Scissors

    Molecular biologist Professor Holger Puchta from KIT is granted funding within a Reinhart Koselleck Project by the German Research Foundation (DFG) for work on specific restructuring of plant genomes. Puchta, a pioneer of green genetic engineering, has used molecular scissors in plants for 30 years now. His new project is aimed at using the CRISPR/Cas method to freely combine genes in crops, thus making Gregor Mendel’s dream come true.

    https://biopro-v9-test-bio.xanium.io/en/articles/pm/green-genetic-engineering-making-mendels-dream-come-true-molecular-scissors
  • Press release - 20/12/2022

    Strong and biodegradable

    A polyester plastic of great mechanical stability, which is also easily recyclable and even compostable: Stefan Mecking, chemist at the University of Konstanz, and his research group present a new material.

    https://biopro-v9-test-bio.xanium.io/en/articles/pm/strong-and-biodegradable
  • Project BW2Pro - 29/08/2022 Luftbild Bioabfallvergärungsanlage Backnang-Neuschöntal

    Biowaste to Products: biorefinery transforms biowaste into new products

    In 2020, Germany’s population collected over 5 million tonnes of biowaste. Most of this was composted, and some was fermented into biogas. Scientists in Baden-Württemberg think there's room for more. Within the project ‘Biowaste to Products’ (BW2Pro) they want to transform biowaste into new products in a biorefinery. The idea is to produce biodegradable plant pots, mulch material, fertilisers, enzymes and biobased plastics in addition to…

    https://biopro-v9-test-bio.xanium.io/en/articles/news/biowaste-products-biorefinery-transforms-biowaste-new-products
  • Press release - 13/01/2022

    Turning harmful CO2 into useful chemicals

    Making important raw materials for fine chemicals out of carbon dioxide really works. As part of the Max Planck collaborative project eBioCO2n, a team of researchers from Fraunhofer IGB have successfully performed a first ever fixation of CO2 via a multi-enzyme enzyme reaction driven by electricity yielding a prospective intermediate for the chemical industry. The process for electro-biocatalytic CO2 fixation was recently published and is…

    https://biopro-v9-test-bio.xanium.io/en/articles/pm/turning-harmful-co2-useful-chemicals
  • Climate-friendly circular economy - 11/11/2021 Chemical plant in the laboratory with pumps, tubes and equipment for electrolysis.

    CO2 from the air as a raw material for chemicals

    A Fraunhofer team has successfully produced a dye using CO2 adsorbed from the air. The aim is to move towards a climate- and resource-friendly circular economy. Chemicals, as well as fuels, can be produced cost-effectively using this process. How does the technical process work, and what opportunities does it open up?

    https://biopro-v9-test-bio.xanium.io/en/articles/news/co2-air-raw-material-chemicals
  • Press release - 01/10/2021

    Crucial step identified in the conversion of biomass to methane

    Researchers find the enzymatic link in the formation of methane from fatty acids by cooperating microorganisms. Microbial production of methane from organic material is an essential process in the global carbon cycle and an important source of renewable energy. This natural process is based on a cooperative interaction between different types of microorganisms: the fermenting bacteria and the methane-producing archaea.

    https://biopro-v9-test-bio.xanium.io/en/articles/pm/crucial-step-identified-conversion-biomass-methane
  • Press release - 02/08/2021

    CO2 as a raw material for plastics and other products

    Carbon dioxide is one of the main drivers of climate change – which means that we need to reduce CO2 emissions in the future. Fraunhofer researchers are highlighting a possible way to lower these emissions: They use the greenhouse gas as a raw material, for instance to produce plastics. To do this, they first produce methanol and formic acid from CO2, which they convert via microorganisms into building blocks for polymers and the like.

    https://biopro-v9-test-bio.xanium.io/en/articles/pm/co2-raw-material-plastics-and-other-products
  • Press release - 08/02/2021

    Water-repellent and more: coating textiles sustainably with chitosan

    Textiles can be coated with the biopolymer chitosan and thus made water-repellent by binding hydrophobic molecules. The good thing is that this can also replace toxic and petroleum-based substances that are currently used for textile finishing. In the last few years Fraunhofer IGB and partners have developed technology to provide fibers with the desired properties using biotechnological processes and chitosan.

    https://biopro-v9-test-bio.xanium.io/en/articles/pm/Water-repellent-and-more-coating-textiles-sustainably-with-chitosan
  • Article - 30/01/2019 Photo of Sven Benson.

    candidum – computer-assisted enzyme design

    Industry has been using enzymes for over a hundred years. While it initially had to content itself with natural enzymes, it is now increasingly possible to design tailor-made biocatalysts with specific properties. The start-up company candidum GmbH from Stuttgart promises to achieve this faster than ever before - mostly thanks to accelerated virtual screening.

    https://biopro-v9-test-bio.xanium.io/en/articles/news/candidum-computer-assisted-enzyme-design
  • Dossier - 20/03/2017 The photo shows tree trunks piled up along the road. The wood processing plant in the city of Buchenbach can be seen in the background.

    Lignin – a natural resource with huge potential

    Petroleum is the raw material for basic chemicals. Growing demand and dwindling resources mean that the chemical industry is increasingly focusing on renewable resources. Lignin is a wood component that is proving to be a promising resource. It is currently almost exclusively used for generating energy, although it could also be used for other purposes. In Baden-Württemberg, a research consortium is specifically focused on exploring its…

    https://biopro-v9-test-bio.xanium.io/en/articles/dossiers/lignin-a-natural-resource-with-huge-potential
  • Dossier - 16/06/2014 The photo shows food scientists evaluating different cheeses.

    Biotechnology as a tool for the production of food

    Biotechnology opens up numerous opportunities for the food industry. The targeted use of biotechnological methods can help reduce the quantity and number of unhealthy ingredients in foods as well as degrade allergenic substances. Genomic research and targeted breeding also greatly facilitate progress in agriculture. Food biotechnology therefore contributes significantly to saving resources, optimising harvest yields and producing better foods.

    https://biopro-v9-test-bio.xanium.io/en/articles/dossiers/biotechnology-as-a-tool-for-the-production-of-food
  • Dossier - 09/12/2013 20751_de.jpg

    Industrial biotechnology biological resources for industrial processes

    Industrial or white biotechnology uses microorganisms and enzymes to produce goods for industry, including chemicals, plastics, food, agricultural and pharmaceutical products and energy carriers. Renewable raw materials and increasingly also waste from agriculture and forestry are used for the manufacture of industrial goods.

    https://biopro-v9-test-bio.xanium.io/en/articles/dossiers/industrial-biotechnology-biological-resources-for-industrial-processes
  • Dossier - 08/10/2012 13527_de.jpg

    Marine biotechnology unknown sources of hope from the depths of the sea

    Biotechnological methods are used to investigate marine life and the results obtained from these investigations advance research in the fields of medicine and energy and into substances used as food supplements and cosmetics. The area of marine biotechnology is fairly diverse. Although it is not on the coast even the southern German state of Baden-Württemberg is involved in marine biotechnology.

    https://biopro-v9-test-bio.xanium.io/en/articles/dossiers/marine-biotechnology-unknown-sources-of-hope-from-the-depths-of-the-sea
  • Dossier - 01/10/2012 virtual molecular structure

    Systems biology understanding complex biological systems

    Systems biology studies complex interactions within biological systems on the genome proteome and organelle level. Many techniques from the fields of systems theory and associated fields can be used to gain an understanding of the behaviour and biological mechanisms of cellular systems.

    https://biopro-v9-test-bio.xanium.io/en/articles/dossiers/systems-biology-understanding-complex-biological-systems
  • Dossier - 23/07/2012 Biopro-Grafik-Biooekonomie-Stadt-R-Einzelne-Grafiken-gross5.png

    Extremophilic bacteria

    Extremophilic bacteria love it hot, sour or salty, toxic substances like heavy metals also do them good and even give them energy. As molecular and systems biology techniques get better and better, industry is also becoming increasingly interested in these exotic organisms. What potential does knowing the biochemistry of extremophilic bacteria have for the pharmaceutical, cosmetics and sanitary articles industries?

    https://biopro-v9-test-bio.xanium.io/en/articles/dossiers/extremophilic-bacteria
  • Extend search to all portals
  • Search the Healthcare industry database
  • Search the Research institutions
Search terms
Portal
Information type
  • Type
    Event date
    From
    To
  • Type
  • Publication date
    Topics
    Topics
  • Publication date
Reset

Footer navigation

  • Bioeconomy in BW
    • What is a bioeconomy?
    • Bioeconomy in BW
    • Bioeconomy stakeholders in BW
  • Articles
    • News
    • Press releases
    • Dossiers
    • Biobased resources
    • Bioenergy
    • Materials and chemicals
    • Politics, ethics & economy
    • Environmental analytics
  • Project pages
    • MDR & IVDR
    • Innovation & Startups
  • Portals
    • BIOPRO BW
    • Healthcare industry
    • Bioeconomy
  • To top

stay informed

Newsletter abonnieren

Social Media

  • Xing Xing
  • Twitter visit Twitter
  • LinkedIn visit LinkedIn
  • Rss visit RSS
  • Privacy statement
  • Accessability Declaration
  • Legal notice
  • Sitemap
  • Contact
© 2025
Website address: https://biopro-v9-test-bio.xanium.io/en/search